(本小题满分14分) 已知中心在坐标原点的椭圆
经过点
,且点
为其右焦点。
(1)求椭圆的方程;
(2)是否存在平行于的直线
,使得直线
与椭圆
有公共点,且直线
与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由。
设,
.
(Ⅰ)化简集合;
(Ⅱ)若,求实数
的取值范围.
已知:关于
的方程
有两个不相等的负实根;
:关于
的不等式
的解集为
.
若为真,
为假,求实数
的取值范围.
设函数.
(1)当时,求曲线
在
处的切线方程;
(2)当时,求函数
的单调区间;
(3)在(2)的条件下,设函数,若对于
,
,使
成立,求实数
的取值范围.
已知数列满足
,
(
).
(1)证明数列为等比数列,并求数列
的通项公式;
(2)设,求
的前n项和
;
(3)设,数列
的前n项和
,求证:对
.
工厂有一段旧墙长m,现准备利用这段旧墙为一面,建造平面图形为矩形,面积为
m2的厂房,工程条件是:(1)建1m新墙费用为a元;(2)修1 m旧墙费用是
元;(3)拆去1 m旧墙,用所得材料建1m新墙费用为
元,经过讨论有两种方案:
①利用旧墙的一段(x<14)为矩形厂房一面的边长;
②矩形厂房利用旧墙的一面,矩形边长x≥14。
问:如何利用旧墙,即x为多少m时,建墙费用最省?①②两种方案哪种更好?