(本小题满分13分)已知椭圆的离心率
,直线
与椭圆交于
两点,
为椭圆的右顶点,
(1)求椭圆的方程;
(2)若椭圆上存在两点使
,求
面积的最大值.
已知数列an=求a1+a2+a3+a4+…+a99+a100的值.
已知等差数列{an}前三项之和为-3,前三项积为8.
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
已知数列{an}的前n项和为Sn=3n-1.
(1)求数列{an}的通项公式;
(2)若bn=(Sn+1),求数列{bnan}的前n项和Tn.
在各项均为正数的等比数列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求数列{anbn}的前n项和Sn.
设f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.