已知,(
)
(1) 判断在
上的增减性,并证明你的结论。
(2) 解关于的不等式
。
(3) 若在
上恒成立,求实数a的取
值范围。
如图,在等腰梯形中,
是梯形的高,
,
,现将梯形沿
折起,使
,且
,得一简单组合体
如图所示,已知
分别为
的中点.
(1)求证:平面
;
(2)求证:平面
.
为了更好地开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”,“街舞”,“动漫”,“话剧”四个社团中抽取若干人组成社团指导小组,有关数据见下表:(单位:人)
(1)求的值;
(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.
已知三个内角
的对边分别为
,向量
,
,且
与
的夹角为
.
(1)求角的值;
(2)已知,
的面积
,求
的值.
已知函数.
(1)求不等式的解集;
(2)若关于的不等式
在
上恒成立,求实数
的取值范围.
在直角坐标系中,曲线
的参数方程为
(
为参数),若以直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标,曲线
的极坐标方程为
(其中
为常数).
(1)若曲线与曲线
只有一个公共点,求
的取值范围;
(2)当时,求曲线
上的点与曲线
上的点的最小距离