两个盒内分别盛着写有0,1,2,3,4,5六个数字的六张卡片,若从每盒中各取一张,求所取两数之和等于6的概率,现有甲、乙两人分别给出的一种解法:甲的解法:因为两数之和可有0,1,2,…,10共11种不同的结果,所以所求概率为.乙的解法:从每盒中各取一张卡片,共有36种取法,其中和为6的情况有5种:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)因此所求概率为.试问哪一种解法正确?为什么?
在中,角的对边分别为向量,,且. (1)求的值; (2)若,,求角的大小及向量在方向上的投影.
已知函数(). (1)当时,求函数的单调区间; (2)当时,取得极值,求函数在上的最小值;
已知抛物线的顶点在坐标原点,焦点在轴上,且过点. (1)求抛物线的标准方程; (2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
已知函数 (1)若求在处的切线方程; (2)若在区间上恰有两个零点,求的取值范围.
如图,四棱锥的底面是正方形,棱底面,,是的中点. (1)证明平面; (2)证明平面平面.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号