(本小题满分14分)设函数,(1)求证;(2)函数在区间(0,2)内至少有一个零点;(3)设求的取值范围.
已知函数,其中,求函数的值域.
已知正数数列的前项和为,,数列满足.(Ⅰ)求数列和的通项公式; (Ⅱ)当时,,求数列的前项和.
设是定义在上的奇函数,且对任意,当时,都有.(Ⅰ)求实数的值;(Ⅱ)解不等式.
已知全集U = R,非空集合,.(Ⅰ)当时,求(∁U);(Ⅱ)命题,命题,若是的必要条件,求实数的取值范围.
已知函数.(Ⅰ)求函数的单调减区间和极值;(Ⅱ)当时,若恒成立,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号