如图,四棱锥中,底面
是平行四边形,
侧面
,点
在侧棱
上,且
.
(Ⅰ)求证:平面平面
;
(Ⅱ) 若与
所成角为
,二面角
的大小为
,求
与平面
所成角的大小.
(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.
(文科)已知点为双曲线
(
为正常数)上任一点,
为双曲线的右焦点,过
作右准线的垂线,垂足为
,连接
并延长交
轴于
.
(1)线段的中点
的轨迹
的方程;
(2)设轨迹与
轴交于
两点,在
上任取一点
,直线
分别交
轴于
两点.求证:以
为直径的圆过两定点.
(理科)已知是抛物线
上一点,经过点
的直线
与抛物线
交于
两点(不同于点
),直线
分别交直线
于点
.
(Ⅰ)求抛物线方程及其焦点坐标;
(Ⅱ)已知为原点,求证:
为定值.
(文科)已知抛物线:
,
为直线
上任意一点,过点
作抛物线
的两条切线
,切点分别为
,
.
(Ⅰ)当的坐标为
时,求过
三点的圆的方程;
(Ⅱ)证明:以为直径的圆恒过点
.
(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点
,
点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设为抛物线上的一个定点,过
作抛物线的两条互相垂直的弦
,
,求证:
恒过定点
.
(3)直线与抛物线交于
,
两点,在抛物线上是否存在点
,使得△
为以
为斜边的直角三角形.