(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点,点到抛物线焦点的距离为1. (1)求该抛物线的方程; (2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点. (3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以 为斜边的直角三角形.
已知数列前项和满足,等差数列满足 (1)求数列的通项公式 (2)设,数列的前项和为,问的最小正整数n是多少?
已知函数(). (1)若的定义域和值域均是,求实数的值; (2)若对任意的,,总有,求实数的取值范围.
已知向量,,函数. (1)求函数的最小正周期和单调增区间; (2)在中,分别是角的对边,R为外接圆的半径,且,,,且,求的值.
若关于的不等式的解集是,的定义域是,若,求实数的取值范围.
设函数. (Ⅰ)若,求的最小值; (Ⅱ)若当时,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号