(理科)椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.
如图:已知圆上的弧 ,过 点的圆的切线与 的延长线交于 点,证明:
(Ⅰ)
.
(Ⅱ)
.
设函数
(Ⅰ)若
,求
的单调区间;
(Ⅱ)若当
时
,求
的取值范围
设
分别是椭圆
的左、右焦点,过
的直线
与
相交于
两点,且
成等差数列.
(Ⅰ)求
.
(Ⅱ)若直线 的斜率为1,求 的值.
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
如图,已知四棱锥
的底面为等腰梯形,
,
,垂足为
,
是四棱锥的高。
(Ⅰ)证明:平面
平面
;
(Ⅱ)若
,
60°,求四棱锥
的体积。