. (满分12分)
矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:.
若点在直线AD上.
(1)求点A的坐标及矩形ABCD外接圆的方程;
(2)过直线上一点P作(1)中所求圆的切线,设切点为E、F,求四边形PEMF面积的最小值,并求此时
的值.
(本小题满分12分)
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望。
(本小题满分12分)
已知函数。
(1)求的最小正周期;
(2)若将的图象向右平移
个单位,得到函数
的图象,求函数
在区间
上的最大值和最小值。
((本小题满分14分)
设数列是公差为
的等差数列,其前
项和为
.
(1)已知,
,
(ⅰ)求当时,
的最小值;
(ⅱ)当时,求证:
;
(2)是否存在实数,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(
已知椭圆的左焦点
及点
,原点
到直线
的距离为
.
(1)求椭圆的离心率
;
(2)若点关于直线
的对称点
在圆
上,求椭圆
的方程及点
的坐标.
如图,有一正方形钢板缺损一角(图中的阴影部分),边缘线
是以直线AD为对称轴,以线段
的中点
为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线
,可使剩余的直角梯形的面积最大?并求其最大值.