(本小题满分12分)已知向量,,若,求的值.
设函数 (Ⅰ)证明对每一个,存在唯一的,满足; (Ⅱ)由(Ⅰ)中的构成数列,判断数列的单调性并证明; (Ⅲ)对任意,满足(Ⅰ),试比较与的大小.
已知函数 (Ⅰ)设为函数的极值点,求证: ; (Ⅱ)若当时,恒成立,求正整数的最大值.
已知函数 (Ⅰ)若函数在处的切线垂直轴,求的值; (Ⅱ)若函数在区间上为增函数,求的取值范围; (Ⅲ)讨论函数的单调性.
设函数, (Ⅰ)求函数的最小正周期,并求在区间上的最小值; (Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求.
设函数, (Ⅰ)求函数的单调区间; (Ⅱ)求函数在区间上的最值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号