为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数条形图,解答下列问题:
(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);
(Ⅱ)补全频数条形图;
(Ⅲ)学校决定成绩在75.5~85.5分的学生为二等奖,问该校获得二等奖的学生约为多少人?
分组 |
频数 |
频率 |
50.5~60.5 |
4 |
0.08 |
60.5~70.5 |
|
0.16 |
70.5~80.5 |
10 |
|
80.5~90.5 |
16 |
0.32 |
90.5~100.5 |
|
|
合计 |
50 |
|
【2015高考陕西,理20】(本小题满分12分)已知椭圆(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的
方程.
【2015高考湖北,理21】一种作图工具如图1所示.是滑槽
的中点,短杆
可绕
转动,长杆
通过
处铰链与
连接,
上的栓子
可沿滑槽AB滑动,且
,
.当栓子
在滑槽AB内作往复运动时,带动
绕
转动一周(
不动时,
也不动),
处的笔尖画出的曲线记为
.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线与两定直线
和
分别交于
两点.若直线
总与曲线
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
【2015高考四川,理20】如图,椭圆E:的离心率是
,过点P(0,1)的动直线
与椭圆相交于A,B两点,当直线
平行与
轴时,直线
被椭圆E截得的线段长为
.
(1)求椭圆E的方程;
(2)在平面直角坐标系中,是否存在与点P不同的定点Q,使得
恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
【2015高考重庆,理21】如图,椭圆的左、右焦点分别为
过
的直线交椭圆于
两点,且
(1)若,求椭圆的标准方程
(2)若求椭圆的离心率
【2015高考天津,理19】(本小题满分14分)已知椭圆的左焦点为
,离心率为
,点M在椭圆上且位于第一象限,直线
被圆
截得的线段的长为c,
.
(Ⅰ)求直线的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点在椭圆上,若直线
的斜率大于
,求直线
(
为原点)的斜率的取值范围.