为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数条形图,解答下列问题:
(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);
(Ⅱ)补全频数条形图;
(Ⅲ)学校决定成绩在75.5~85.5分的学生为二等奖,问该校获得二等奖的学生约为多少人?
分组 |
频数 |
频率 |
50.5~60.5 |
4 |
0.08 |
60.5~70.5 |
|
0.16 |
70.5~80.5 |
10 |
|
80.5~90.5 |
16 |
0.32 |
90.5~100.5 |
|
|
合计 |
50 |
|
已知函数
(1)证明:对于一切的实数x都有f(x)x;
(2)若函数存在两个零点,求a的取值范围
(3)证明:
过抛物线的焦点
作倾斜角为
的直线交抛物线于
、
两点,过点
作抛物线的切线
交
轴于点
,过点
作切线
的垂线交
轴于点
。
(1) 若,求此抛物线与线段
以及线段
所围成的封闭图形的面积。
(2) 求证:;
如图,是棱长为
的正方体,
、
分别是棱
、
上的动点,且
.
(1)求证:;
(2)当、
、
、
共面时,求:面
与面
所成二面角的余弦值.
已知函数为大于零的常数。
(1)若函数内调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。
已知数列{an}满足S n + a n= 2n +1.
(1)写出a1,a2,a3, 并推测a n的表达式;
(2)用数学归纳法证明所得的结论.