已知椭圆C:的离心率等于
,点P
在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由.
设函数的图像在
处取得极值4.
(1)求函数的单调区间;
(2)对于函数,若存在两个不等正数
,当
时,函数
的值域是
,则把区间
叫函数
的“正保值区间”.问函数
是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,
,
点
分别是线段
的中点.
(1)求证:平面平面
;
(2)试问在线段上是否存在点
,使得
平面
,若存在,求
的长并证明;若不存在,说明理由.
右表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知
(1)求数列的通项公式;
(2)设求数列
的前
项和
。
已知向量,
当时,求函数
的值域:
(2)锐角中,
分别为角
的对边,若
,求边
.