已知函数
满足
;
①若方程
有唯一的解,求实数
的值;
②若函数
的定义域为R,求实数
的取值范围.
题号:04
“矩阵与变换和坐标系与参数方程”模块(10分)
在极坐标系中,极点为A,已知“葫芦”型封闭曲线
由圆弧ACB和圆弧BDA组成.已知
(1)求圆弧ACB和圆弧BDA的极坐标方程;
(2)求曲线
围成的区域面积.
数学自选模块
题号:03
“数学史与不等式选讲”模块
已知函数
,且
,对于定义域内的任意实数
(1)设
时,S取得最小值,求a,b的值;(2)在(1)的条件下,证明:对任意
成立.
(本小题满分15分)设
,函数
,
.
(1)当
时,比较
与
的大小;
(2)若存在实数
,使函数
的图象总在函数
的图象的上方,求
的取值集合.
(本题满分15分) 已知抛物线
的顶点是椭圆
的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线
的方程;
(2)已知动直线
过点
,交抛物线
于
、
两点.
若直线
的斜率为1,求
的长;
是否存在垂直于
轴的直线
被以
为直径的圆
所截得的弦长恒为定值?如果存在,求出
的方程;如果不存在,说明理由.
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
.
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C为30°,设PM=tMC,
试确定t的值