己知.
(Ⅰ),函数
在其定义域内是减函数,求
的取值范围;
(Ⅱ)当时,证明函数
只有一个零点;
(Ⅲ)若函数的两个零点
,求证:
.
.(本小题满分l 4分)
如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:
(i)求四棱锥P-BDEF的体积;
(ii)若点Q满足=λ
(λ >0),试探究:直线OQ与平面PBD所成角的大小是否一定大于
?并说明理由.
.(本小题满分13分)
如图,椭圆(a>b>0)的上、下顶点分别为A、B,已知点B在直线l:y=-1上,且椭圆的离心率e =
.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN
(本小题满分13分)
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X .
(Ⅰ)求X的分布列;
(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为y,求y的数学期望.
(本小题满分13分)
在数列{a n}中,a1=2,点(a n,a n+1)(n∈N*)在直线y=2x上.
(Ⅰ)求数列{ a n }的通项公式;
(Ⅱ)若bn=log2 an,求数列的前n项和Tn.
(本小题满分15分)设函数,(其中
为实常数且
),曲线
在点
处的切线方程为
.
(Ⅰ) 若函数无极值点且
存在零点,求
的值;
(Ⅱ) 若函数有两个极值点,证明
的极小值小于
.