(本小题满分12分)小明参加一次比赛,比赛共设三关。第一、二关各有两个问题,两个问题全答对,可进入下一关。第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得价值分别为100、300、500元的奖励。小明对三关中每个问题回答正确的概率依次为、、,且每个问题回答正确与否相互独立。(1)求小明过第一关但未过第二关的概率;(2)用表示小明所获得奖品的价值,求的分布列和期望。
已知函数。 (Ⅰ)设,讨论的单调性; (Ⅱ)若对任意恒有,求的取值范围。
设数列的前项的和, (Ⅰ)求首项与通项; (Ⅱ)设,,证明:.
在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求: (Ⅰ)点M的轨迹方程;(Ⅱ)的最小值。
1)设函数,求的最小值; (2)设正数满足, 求证
数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (1)求数列的通项公式; (2)若b=a4(), B是数列{b}的前项和, 求证:不等式 B≤4B,对任意皆成立. (3)令
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号