探究函数,
的最小值,并确定取得最小值时
的值,列表如下:
![]() |
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
![]() |
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
请观察表中值随
值变化的特点,完成下列问题:
(1) 当时,
在区间
上递减,在区间 上递增;
所以,= 时,
取到最小值为 ;
(2) 由此可推断,当时,
有最 值为 ,此时
= ;
(3) 证明: 函数在区间
上递减;
(4) 若方程在
内有两个不相等的实数根,求实数
的取值范围。
(本小题满分12分)
如图,圆与圆
的半径
都等于1,
. 过动点
分别作圆
、圆
的切线
(
分别为切点),使得|PM|=|PN|.
试建立适当的坐标系,并求动点的轨迹方程.
(本小题满分12分)
已知,
,若·=,
且,求
的值
(本小题满分12分)
已知数列满足
(Ⅰ)欲求的通项公式,若能找到一个函数
(A、B、C未必常数),把递推
关系变成
后,就容易求出
的通项了.请问:这样的
存在吗?
的通项公式是什么?
(Ⅱ)记,若不等式
对任意
都成立,求实数
的
取值范围。
(本小题满分12分)
设分别是椭圆
的左、右焦点,过
斜率为1的直线
与
相交于
两点,且
成等差数列。
(Ⅰ)求的离心率;
(Ⅱ)设点满足
,求
的方程。
(本小题满分12分)
已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若
,函数
,若对任意的
,总存在
,使
,求实数
的取值范围。