已知函数,
,其中
,设
.
(1)判断的奇偶性,并说明理由;
(2)若,求使
成立的x的集合.
已知两点及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆
有且仅有一个公共点,点
是直线
上的两点,且
,
. 求四边形
面积
的最大值.
如图,已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.
(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M﹣EFG的体积.
为预防H7N9病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
分组 |
A组 |
B组 |
C组 |
疫苗有效 |
673 |
a |
b |
疫苗无效 |
77 |
90 |
c |
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c ≥30,求通过测试的概率
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.
对于函数,若存在实数对(
),使得等式
对定义域中的每一个
都成立,则称函数
是“(
)型函数”.
(1) 判断函数是否为“(
)型函数”,并说明理由;
(2) 若函数是“(
)型函数”,求出满足条件的一组实数对
;
(3)已知函数是“(
)型函数”,对应的实数对
为(1,4).当
时,
,若当
时,都有
,试求
的取值范围.