为了了解中学生的体能情况,抽取了某校一个年级的部分学生进行一次跳绳次数测试,将所得的数据 整理后,画出频率分布直方图,如下图所示,已知图中从左到右前三个小组的频率分别为
,
第一小组的频数为5
(1)求第四小组的频率;
(2)参加这次测试的学生数是多少?
(3)若次数在60次以上(含60次)为达标,试求该年级学生跳绳测试的达标率是多少?
(4)利用直方图估计该年级学生此次跳绳次数的平均值。
已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为
万元,且
.
(1)写出年利润(万元)关于年产量
(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(1)解不等式:;
(2)已知集合,
.若
,求实数
的取值组成的集合.
在△中,内角
所对的边分别为
,已知m
,n
,m·n
.
(1)求的大小;
(2)若,
,求△
的面积.
已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列
前
项和为
,且满足
(1)求数列的通项公式;
(2)求数列前
项和
;
(3)在数列中,是否存在连续的三项
,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数
的值;若不存在,说明理由.
设函数.
(1)若,求
的单调区间;
(2)若当时
,求
的取值范围