在△ABC中,a,b,c分别是角A,B,C的对边,向量m=(2sinB,2-cos2B),n=(2sin2(+
),-1),且m⊥n.
(1)求角B的大小;
(2)求sinA+cosC的取值范围.
已知函数f(x)=cos2ωx+sinωxcosωx-
(ω>0)的最小正周期为π.
(1)求ω值及f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f(
)=
,求角C的大小.
已知函数f(x)=cos(+x)·cos(
-x),g(x)=
sin2x-
.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
已知α,β∈(0,π),且tan(α-β)=,tanβ=-
,求2α-β的值.
已知函数f(x)=6cos2+
sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=,且x0∈(-
,
),求f(x0+1)的值.