(本题12分)已知函数.
(1)若,求函数
的零点;
(2)若关于的方程
在
上有2个不同的解
,求
的取值范围,并证明
.
如图为函数的部分图象,ABCD是矩形,A,B在图像上,将此矩形绕x轴旋转得到的旋转体的体积的最大值为
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(本小题14分)已知函数,
,
.
(1)求函数的极值点;
(2)若在
上为单调函数,求
的取值范围;
(3)设,若在
上至少存在一个
,使得
成立,求
的取值范围.
(本小题13分)已知,函数
且
,
且
.
(1)如果实数满足
且
,函数
是否具有奇偶性? 如果有,求出相应的
值;如果没有,说明原因;
(2)如果,讨论函数
的单调性。
(本小题12分)已知圆C:,其中
为实常数.
(1)若直线l:被圆C截得的弦长为2,求
的值;
(2)设点,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求
的取值范围.
(本小题12分)已知等差数列满足:
.
(1)求的通项公式;
(2)若(
),求数列
的前n项和
.