游客
题文

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若MN是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

.
(1)当时,,求a的取值范围;
(2)若对任意恒成立,求实数a的最小值.

已知曲线C的极坐标方程为,直线的参数方程为(t为参数,).
(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(2)若直线经过点,求直线被曲线C截得的线段AB的长.

如图,直线AB过圆心O,交于F(不与B重合),直线相切于C,交AB于E,且与AF垂直,垂足为G,连结AC.

求证:(1);(2).

已知函数.
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

已知圆,直线与圆相切,且交椭圆两点,c是椭圆的半焦距,.
(1)求m的值;
(2)O为坐标原点,若,求椭圆的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号