设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
设.
(1)当时,
,求a的取值范围;
(2)若对任意,
恒成立,求实数a的最小值.
已知曲线C的极坐标方程为,直线
的参数方程为
(t为参数,
).
(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(2)若直线经过点
,求直线
被曲线C截得的线段AB的长.
如图,直线AB过圆心O,交于F(不与B重合),直线
与
相切于C,交AB于E,且与AF垂直,垂足为G,连结AC.
求证:(1);(2)
.
已知函数.
(1)当时,求
的极值;
(2)当时,讨论
的单调性;
(3)若对任意的,
,恒有
成立,求实数
的取值范围.
已知圆,直线
与圆
相切,且交椭圆
于
两点,c是椭圆的半焦距,
.
(1)求m的值;
(2)O为坐标原点,若,求椭圆
的方程;
(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点
,直线
与直线
分别交于M,N两点,求线段MN的长度的最小值.