设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
已知函数f (x )=ax 3 + x2 + 2( a ≠ 0 ) .
(Ⅰ) 试讨论函数f (x )的单调性;
(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
在等比数列中,
,公比
,且
,
又是
与
的等比中项。设
.
(Ⅰ) 求数列的通项公式;
(Ⅱ) 已知数列的前
项和为
,
,求
.
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.
现从该箱中任取 ( 无放回 ) 3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ) 求X的分布列;
(Ⅱ) 求X的数学期望E(X).
已知钝角的顶点在原点,始边与
轴的正半轴重合,终边与单位圆相交于点
.
(Ⅰ) 求的值;
(Ⅱ) 若函数, 试问该函数
的图象可由
的图象经过怎样的平移和伸缩变换得到.
已知△ABC的内角A、B、C的对边分别为a、b、c,若.
(Ⅰ) 求的值;
(Ⅱ) 若b =2,且,求边长a的取值范围.