(本小题满分14分)本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分) 选修4-2:矩阵与变换
已知,若
所对应的变换
把直线
变换为自身,求实数
,并求
的逆矩阵。
(2)选修4-4:坐标系与参数方程
已知直线的参数方程:
(
为参数)和圆
的极坐标方程:
。
①将直线的参数方程化为普通方程,圆
的极坐标方程化为直角坐标方程;
②判断直线和圆
的位置关系。
(3)选修4-5:不等式选讲
已知函数
①解不等式;
②证明:对任意,不等式
成立.
已知两点,点
为坐标平面内的动点,且满足
.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)设过点的直线
斜率为
,且与曲线
相交于点
、
,若
、
两点只在第二象限内运动,线段
的垂直平分线交
轴于
点,求
点横坐标的取值范围.
已知函数,直线
与函数
图象相切.
(Ⅰ)求直线的斜率
的取值范围;
(Ⅱ)设函数,已知函数
的图象经过点
,求函数
的极值.
在数列中,
.
(Ⅰ)求证:数列为等差数列;
(Ⅱ)设数列满足
,若
对一切
且
恒成立,求实数
的取值范围.
如图1所示,在边长为
的正方形
中,
,且
,
,
分别交
于点
,将该正方形沿
、
折叠,使得
与
重合,构成如图2所示的三棱柱
中
(Ⅰ)求证:;
(Ⅱ)在底边上有一点
,
,
求证:面
(III)求直线与平面
所成角的正弦值.
已知向量(
为常数且
),函数
在
上的最大值为
.
(Ⅰ)求实数的值;
(Ⅱ)把函数的图象向右平移
个单位,可得函数
的图象,若
在
上为增函数,求
的最大值.