(本题12分)已知是椭圆
上的三点,其中点
的坐标为
,
过椭圆
的中心,且
.
(1)求椭圆的方程;
(2)过点的直线
(斜率存在时)与椭圆
交于两点
,设
为椭圆
与
轴负半轴的交点,且
.求实数
的取值范围
设数列的前
项和
。
(1)求;
(2)证明:是等比数列;
如图,圆O1与圆O2的半径都是1,,过动点P分别作圆O1.圆O2的切线PM、PN(M.N分别为切点),使得
试建立适当的坐标系,并求动点P的轨迹方程
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。
选修4—5:不等式选讲
设函数=
(I)求函数的最小值m;
(II)若不等式恒成立,求实数a的取值范围.
在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位。且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(I)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求的最小值.