(本小题满分12分)
已知椭圆C:的离心率为
,椭圆C上任意一点到椭圆两焦点的距离和为6.
(1)求椭圆C的方程;
(2)设直线:
与椭圆C交于A,B两点,点P(0,1),且
,求直线
的方程.
设全集.
(1)解关于x的不等式;
(2)记A为(1)中不等式的解集,集合,若
恰有3个元素,求
的取值范围.
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是
(t是参数).
(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;
(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.
如图⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于P.
(1)求证:;
(2)若⊙O的半径为,OA=
OM,求MN的长.
设函数在
内有极值.
(1)求实数的取值范围;
(2)若求证:
.
设椭圆C:的离心率
,右焦点到直线
1的距离
,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.