已知公差不为零的等差数列的前3项和
,且
、
、
成等比数列.
(1)求数列的通项公式及前n项的和
;
(2)设的前n项和,证明:
;
(3)对(2)问中的,若
对一切
恒成立,求实数
的最小值.
如图,已知在侧棱垂直于底面的三棱柱中,
,且
,点
是
中点.
(1)求证:平面⊥平面
;
(2)若直线与平面
所成角的正弦值为
,
求三棱锥的体积.
某高校从今年参加自主招生考试的学生中随机抽取容量为的学生成绩样本,得到频率分布表如下:
组数 |
分组 |
频数 |
频率 |
第一组 |
[230,235) |
8 |
0.16 |
第二组 |
[235,240) |
![]() |
0.24 |
第三组 |
[240,245) |
15 |
![]() |
第四组 |
[245,250) |
10 |
0.20 |
第五组 |
[250,255] |
5 |
0.10 |
合计 |
![]() |
1.00 |
(1)求的值;
(2)为了选拔出更加优秀的学生,该高校决定在第三、四、五组中用分层抽样的方法抽取6名学生进行第二轮考核,分别求第三、四、五组参加考核的人数;
(3)在(2)的前提下,高校决定从这6名学生中择优录取2名学生,求2人中至少有1人是第四组的概率.
设函数
(1)求函数的最小正周期;
(2)记的内角A、B、C的对边分别为
,若
且
,求角B的值.
已知函数的图象在
上连续,定义:
,
.其中,
表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶收缩函数”.
(Ⅰ)若,试写出
,
的表达式;
(Ⅱ)已知函数,试判断
是否为
上的“
阶收缩函数”.如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知,函数
是
上的2阶收缩函数,求
的取值范围.