(本小题满分12分)
某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示.若130~140分数段的人数为2人.
(Ⅰ)估计这所学校成绩在90~140分之间学生的参赛人数;
(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.
极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为。
(1)求C的直角坐标方程:
(2)直线:
为参数)与曲线C交于A、B两点,与y轴交于E,求
如图,在△ABC中,∠C=90°,BC=8,AB=10,O为BC上一点,以O为圆心,OB为半径作半圆与BC边、AB边分别交于点D、E,连接DE。
(1)若BD=6,求线段DE的长;
(2)过点E作半圆O的切线,交AC于点F,
证明:AF=EF。
已知函数。
(1)判断函数的单调性;
(2)证明:
抛物线在点P处的切线
分别交x轴、y轴于不同的两点A、B,
。当点P在C上移动时,点M的轨迹为D。
(1)求曲线D的方程:
(2)圆心E在y轴上的圆与直线相切于点P,当|PE|=|PA|,求圆的方程。
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2。
(2)若∠PDC=120°,求四棱锥P—ABCD的体积。