(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3-
x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.
已知数列的前n项和为
,若
,且
.
(1)求数列的通项公式;
(2)求数列的前n项和
.
设的三个内角
所对的边长分别为
. 平面向量
,
,
,且
.
(1)求角的大小;
(2)当时,求函数
的值域.
设命题;命题
.
(1)若命题q所表示不等式的解集为,求实数t的值;
(2)若是
的必要不充分条件,求实数t的取值范围.
选修4—5:不等式选讲
已知函数,
,
.
(1)当时,若
对任意
恒成立,求实数
的取值范围;
(2)当时,求函数
的最小值.
选修4—4:坐标系与参数方程
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以
轴正半轴为极轴,曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数,
),射线
,
,
与曲线
交于(不包括极点
)三点
.
(1)求证:;
(2)当时,
两点在曲线
上,求
与
的值.