游客
题文

(本小题满分12分)
已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形, ,点为棱的中点,点在棱上运动.

(1)求证
(II)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;
(III)在(II)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)
已知函数
(I)证明:函数
(II)设函数在(—1,1)上单调递增,求a的取值范围。

(本小题满分13分)
如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

(本小题满分12分)
象棋比赛中,胜一局得2分,负一局得0分,和棋一局得1分,在甲对乙的每局比赛中,甲胜、负、和的概率依次为0.5,0.3,0.2.现此二人进行两局比赛,得分累加。
(I)求甲得2分的概率;
(II)记甲得分为的分布列和期望。

(本小题满分10分)
已知函数
(I)求函数的最小正周期;
(II)求函数上的最大值与最小值。

(本小题满分14分)
已知向量, 向量, 且, 动点的轨迹为E.
(1)求轨迹E的方程;
(2)证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B, 且(O为坐标原点),并求出该圆的方程;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号