(本小题满分12分)把正奇数列中的数按上小下大,左小右大的原则排列成如图“三角形”所示的数表.设
是位于这个三角形数表中从上往下数第
行,从左向右数第
个数.
(1)若,求
的值;
(2)已知函数的反函数为
,
),若记三角形数表中从上往下数第
行各数的和为
.
①求数列的前
项的和
.
②令设
的前
项之积为
,求证:
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
(本小题满分14分)设函数,
的两个极值点为
,线段
的中点为
.
(1) 如果函数为奇函数,求实数
的值;当
时,求函数
图象的对称中心;
(2) 如果点在第四象限,求实数
的范围;
(3) 证明:点也在函数
的图象上,且
为函数
图象的对称中心.
(本小题满分14分)
如图,设抛物线的准线与
轴交于
,焦点为
;以
为焦点,离心率
的椭圆
与抛物线
在
轴上方的交点为
,延长
交抛物线于点
,
是抛物线
上一动点,且M在
与
之间运动.
(1)当时,求椭圆
的方程,
(2)当的边长恰好是三个连续的自然数时,
求面积的最大值.
(本小题满分13分)某园林公司计划在一块为圆心,半径为5的半圆形(如图)地上种植花草树木,其中弓形
区域用于观赏样板地,
区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1) 设,
,分别用
,
表示弓形
的面积
;
|
(2) 园林公司应该怎样规划这块土地,才能使总利润最大?(参考公式:扇形面积公式
)
![]() |