(本小题满分13分)某园林公司计划在一块为圆心,半径为5的半圆形(如图)地上种植花草树木,其中弓形
区域用于观赏样板地,
区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1) 设,
,分别用
,
表示弓形
的面积
;
|
(2) 园林公司应该怎样规划这块土地,才能使总利润最大?(参考公式:扇形面积公式
)
![]() |
在各项均为负数的数列中,已知点
在函数
的图像上,且
.
(Ⅰ)求证:数列是等比数列,并求出其通项;
(Ⅱ)若数列的前
项和为
,且
,求
.
某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令
表示该公司的资助总额.
(Ⅰ)写出的分布列;
(Ⅱ)求数学期望.
△ABC中,a,b,c分别是角A,B,C的对边,向量=(2sinB,2-cos2B),
,
⊥
.
(Ⅰ)求角B的大小;
(Ⅱ)若,b=1,求c的值.
已知数列的前n项和为
,且满足
,
.
(Ⅰ)问:数列是否为等差数列?并证明你的结论;
(Ⅱ)求和
;
(Ⅲ)求证:.
过抛物线的对称轴上的定点
,作直线
与抛物线相交于
两点.
(I)试证明两点的纵坐标之积为定值;
(II)若点是定直线
上的任一点,试探索三条直线
的斜率之间的关系,并给出证明.