游客
题文

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1//面BDC1
  (Ⅱ)求二面角C1—BD—C的余弦值;
(Ⅲ)在侧棱AA1上是否存在点P,使得
CP⊥面BDC1?并证明你的结论.




 

 

 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:

分组
频数
频率
(3.9,4.2]
3
0.06
(4.2,4.5]
6
0.12
(4.5,4.8]
25
x
(4.8,5.1]
y
z
(5.1,5.4]
2
0.04
合计
n
1.00

(1)求频率分布表中未知量n,x,y,z的值;
(2)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.

已知向量,设函数+1
(1)若,求的值;
(2)在△ABC中,角A,B,C的对边分别是,且满足,求
的取值范围.

已知函数
(1)求函数的极值点;
(2)若直线过点且与曲线相切,求直线的方程;

一动圆与圆外切,与圆内切.
(1)求动圆圆心的轨迹的方程;
(2)设过圆心的直线与轨迹相交于两点,请问为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.

已知函数,数列满足.
(1)证明数列是等差数列,并求数列的通项公式;
(2)记,求.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号