某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.
(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
运行次数n |
输出y的值 为1的频数 |
输出y的值 为2的频数 |
输出y的值 为3的频数 |
30 |
14 |
6 |
10 |
… |
… |
… |
… |
2 100 |
1 027 |
376 |
697 |
乙的频数统计表(部分)
运行次数n |
输出y的值 为1的频数 |
输出y的值 为2的频数 |
输出y的值 为3的频数 |
30 |
12 |
11 |
7 |
… |
… |
… |
… |
2 100 |
1 051 |
696 |
353 |
当n=2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
(本小题满分12分)
如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.
(1)求证:BC⊥平面PAC.
(2)求证:PB⊥平面AEF.
(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?
(本小题满分12分)
如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P、Q分别为AE、AB的中点.
(1)证明:PQ∥平面ACD;
(2)求AD与平面ABE所成角的正弦值.
(本小题满分12分)
P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.
(本小题满分13分)
在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求点P到BC的距离.
(本小题满分13分)
空间四边形中,
,
分别是
的中点,
,求异面直线
所成的角.