(本小题满分9分)
如图5,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)
如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系是 ;
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.
(1)求点A,B的坐标;
(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;
(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.
以下是根据2014年某旅游县接待游客的相关数据绘制的统计图的一部分,请根据图1、图2回答下列问题:
(1)该旅游县5~8月接待游客人数一共是280万人,请将图1中的统计图补充完整;
(2)计算该旅游县5-8月平均每个月接待游客人数的平均数;
(3)该旅游县6月份4A级景点接待游客人数约为多少人?
(3)小明观察图2后认为,4A级景点7月份接待游客人数比8月多了,你同意他的看法吗?说明你的理由.
(1)化简:(a+3)(a-3)+a(4-a)
(2)解不等式组:.
如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,点P从点B开始沿BC边以每秒1cm的速度向点C运动,点Q从点C开始沿CA边以每秒2 cm的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A时,点Q、P停止运动,设它们运动的时间为x cm.
(1)当x= 秒时,射线DE经过点C;
(2)当点Q运动时,设四边形ABPQ的面积为ycm2,求y与x的函数关系式(不用写出自变量取值范围);
(3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x的值;若不存在,请说明理由.