游客
题文

近年来,大学生就业日益困难.为了扶持大学生自主创业,某市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其他费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.

(1)分别求出40<x≤60;60<x<80时,月销售量y(万件)与销售
单价x(元)之间的函数关系;
(2)当销售单价定为50元时,为保证公司月利润达到5万元
(利润=销售额—生产成本—员工工资—其它费用),该公司
可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几月后还清贷款?

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

解方程(组):(1)
(2)
(3)x-2x=2x+1;
(4)x﹣3x=0
(5)

如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.

(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得SAMN=4SAPM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

如图,一次函数y1=x+1的图象与反比例函数y2(k为常数,且k≠0)的图象都经过点
A(m,2).

(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1与y2的大小.

如图,已知A(4,a),B(-2,-4)是一次函数y=kx+b的图象和反比例函数的图象的交点.

(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.

已知直线经过点P(),点P关于轴的对称点P′在反比例函数)的图象上.

(1)求的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号