(本题12分)已知集合是同时满足下列两个性质的函数
组成的集合:
①在其定义域上是单调增函数或单调减函数;
②在的定义域内存在区间
,使得
在
上的值域是
.
(1)判断函数是否属于集合
?并说明理由.若是,则请求出区间
;
(2)若函数,求实数
的取值范围.
如图一,平面四边形关于直线
对称,
。
把沿
折起(如图二),使二面角
的余弦值等于
。对于图二,
(Ⅰ)求;(Ⅱ)证明:
平面
;
(Ⅲ)求直线与平面
所成角的正弦值。
已知数列是首项
的等比数列,其前
项和
中
,
,
成等差数列,
(1)求数列的通项公式;
(2)设,若
,求证:
.
己知在锐角ΔABC中,角所对的边分别为
,且
(Ⅰ)求角大小;
(Ⅱ)当时,求
的取值范围.
.已知圆,直线
过定点 A (1,0).
(1)若与圆C相切,求
的方程;
(2)若的倾斜角为
,
与圆C相交于P,Q两点,求线段PQ的中点M的坐标;
(3)若与圆C相交于P,Q两点,求△CPQ面积的最大值
如图,已知中,
,
斜边
上的高,以
为折痕,将
折 起,使
为直角。
(1)求证:平面平面
;(2)求证:
(3) 求点到平面
的距离;(4) 求点
到平面
的距离;