游客
题文

(本小题满分12分)
已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b  (b>0)与圆O相切,并与双曲线相交于A、B两点.
(1)根据条件求出b和k满足的关系式;
(2)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;
(3)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知函数
(I)若不等式的解集为,求实数的值;
(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.

在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号