(本小题满分14分)
已知A,B,C是△ABC的三个内角,向量,且
.
(1)求角A
(2)若,求
.
..(本题14分)已知为常数,且
,函数
,
(
,为自然对数的底数)
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,是否同时存在实数
和
(
<
),使得对每一个
,直线
与曲线
(
)都有公共点?若存在,求出最小的实数
和最大的实数
;若不存在,说明理由.
.(本题14分)过点的椭圆
(
)的离心率为
,椭圆与
轴的交于两点
(
,
),
(
,
),过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
叫与点
.
(I)当直线过椭圆右交点时,求线段
的长;
(II)当点异于
两点时,求证:
为定值.
.(本题14分)在数列中,
,
,
.
(Ⅰ)证明数列是等比数列;
(Ⅱ)求数列的前
项和
.
..(本题14分)三棱柱中,侧棱与底面垂直,
,
,
分别是
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求三棱锥的体积.
.(本题12分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为
,
,
,
,
,频率分布直方图如图所示.已知生产的产品数量在
之间的工人有6位.
(Ⅰ)求;
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?