( 12分)设函数,其中
(Ⅰ)求的最大值;
(Ⅱ)在中,
分别是角
的对边,且f(A)=2,a=,b+c=3,求b,c的值.
已知函数.
(1)当时,求
在
处的切线方程;
(2)设函数,
(ⅰ)若函数有且仅有一个零点时,求
的值;
(ⅱ)在(ⅰ)的条件下,若,
,求
的取值范围。
已知向量.
(1)当时,求
的值;
(2)设函数,已知在△ ABC中,内角A、B、C的对边分别为
,若
,求
(
)的取值范围.
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)
满足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=,求数列{cn}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn.
已知
(1)最小正周期及对称轴方程;
(2)已知锐角的内角
的对边分别为
,且
,
,求
边上的高的最大值.
已知命题:任意
,有
,命题
:存在
,使得
.若“
或
为真”,“
且
为假”,求实数
的取值范围.