(本小题满分14分)
在平面直角坐标系xoy,已知圆心在第二象限、半径为的圆C与直线y=x相切于坐标原点O。椭圆
与圆C的一个交点到椭圆两焦点的距离之和为10。
(1)求圆C的方程;
(2)在圆C上存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长,请求出Q点的坐标
已知函数
(1)求的解析式及定义域;
(2)求的最大值和最小值。
(本小题满分12分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(
2),BC=2,且AE=AH=CF=CG,设AE=
,绿地面积为
.
(1)写出关于
的函数关系式,指出这个函数的定义域.
(2)当AE为何值时,绿地面积最大?
函数是奇函数,且当
时是增函数,若
,求不等式
的解集。
(10分)设,
若,且
,求
的值。
(本小题满分14分)已知(
,
为此函数的定义域)同时满足下列两个条件:①函数
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数;
请解答以下问题:
(1) 求闭函数符合条件②的区间
;
(2) 判断函数是否为闭函数?并说明理由;
(3)若是闭函数,求实数
的取值范围;