(本小题满分12分)
如图,某小区准备在一直角围墙ABC内的空地上植出一块“绿地ABD”,其中AB长为定值a,BD长可根据需要进行调节(BC足够长)。现规划在
ABD的内接正方形BGEF内种花,其余地方种草,且把种草的面积
与种花的面积
的比值
称为“草花比y”
(1)设,将y表示成
的函数关系式。
(2)当BE为多长时,y有最小值?最小值为多少?
(本小题满分13分)如图,椭圆的离心率为
,x轴被曲线
截得的线段长等于
的长半轴长。
(Ⅰ)求,
的方程;
(Ⅱ)设与y轴的交点为M,过坐标原点O的直线
与
相交于点A,B,直线MA,MB分别与
相交与D,E.
(Ⅰ)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是.问:是否存在直线
,使得
?请说明理由.
(本小题满分12分)如图,已知长方形中,
,
为
的中点.将
沿
折起,使得平面
平面
.
(Ⅰ)求证:;
(Ⅱ)若点是线段
上的一动点,问点E在何位置时,二面角
的余弦值为
.
(本小题满分12分)某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某同学能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响。
(Ⅰ)求该同学被淘汰的概率;
(Ⅱ)该同学在选拔中回答问题的个数记为,求随机变量
的分布列与数学期望.
(本小题满分12分)已知数列的前
项和为
,首项
,且对于任意
都有
.
(Ⅰ)求的通项公式;
(Ⅱ)设,且数列
的前
项之和为
,求证:
(本小题满分12分)在锐角中,
.
(Ⅰ)求角;(Ⅱ)若
,求
的取值范围.