已知函数其中
,
设.
(1)求函数的定义域,判断
的奇偶性,并说明理由;
(2)若,求使
成立的
的集合
已知椭圆的离心率为
,短轴端点到焦点的距离为2.
(1)求椭圆C的方程;
(2)设点A,B是椭圆C上的任意两点, O是坐标原点,且OA⊥OB.
①求证:原点O到直线AB的距离为定值,并求出该定值;
②任取以椭圆C的长轴为直径的圆上一点P,求面积的最大值.
已知是函数
的一个极值点.
(Ⅰ)求;
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数
的图像有
个交点,求
的取值范围.
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,其中学习积极性高
的同学中,积极参加班级工作的有18名,不太主动参加班级工作的有7名;学习积极性一般的同学中,
积极参加班级工作的有6名,不太主动参加班级工作的有19名.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?
参考公式:统计量的表达式是:
![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
设各项均为正数的数列的前
项和为
,满足
且
构成等比数列.
(1)证明:;
(2)求数列的通项公式.
若函数的图象与直线
(m>0)相切,并且切点的横坐标依次成公差为
的等差数列.
(Ⅰ)求的值;
(Ⅱ)若点是
图象的对称中心,且
,求点
的坐标.