(本小题满分12分)已知棱长为1的正方体AC1,E,F分别是B1 C1和C1D1的中点
(1)求点A1到平面BDFE的距离
(2)求直线A1D与平面BDFE所成的角
若椭圆C1:
的离心率等于
,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.
(1)求抛物线C2的方程;
(2)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
.已知椭圆C:+=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标;
(2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM、kPN,当kPM·kPN=-时,求椭圆的方程.
.已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(Ⅱ)当
时,求函数f(x)的单调区间与极值.
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求点B到平面PCD的距离;
(3)求二面角C-AE-D的余弦值
(14分)已知函数
,
(1)若函数
为奇函数,求
的值。
(2)若
,有唯一实数解,求
的取值范围。
(3)若
,则是否存在实数
(
),使得函数
的定义域和值域都为
。若存在,求出
的值;若不存在,请说明理由