(本小题满分分)
已知是偶函数.
(Ⅰ)求实常数的值,并给出函数
的单调区间(不要求证明);
(Ⅱ)为实常数,解关于
的不等式:
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,
.
(1)证明:AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P—BD—A的大小.
(本小题满分13分)
已知函数的导数
.a,b为实数,
.
(1)若在区间
上的最小值、最大值分别为
、1,求a、b的值;
(2)在 (1) 的条件下,求曲线在点P(2,1)处的切线方程.
(本小题满分13分)
有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合.
(1)求从口袋A中摸出的3个球为最佳摸球组合的概率;
(2)现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率.
(本小题满分13分)
已知函数的图象按向量
平移得到函数
的图象.
(1)求实数a、b的值;
(2)设函数,求函数
的单调递增区间和最值.
(本小题满分12分)
数列:满足
(1)设,求证
是等比数列;
(2)求数列的通项公式;
(3)设,数列
的前
项和为
,求证: