(本小题满分12分)
某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
60 |
90 |
300 |
x |
160 |
(I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽
样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,
求他被抽中的概率;
(II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;
(III)作出频率分布直方图,并估计该学校本次考试的数学平均分。(同一组中的数据用该组区间的中点值作代表)
设椭圆的离心率
,
是其左右焦点,点
是直线
(其中
)上一点,且直线
的倾斜角为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是椭圆
上两点,满足
,求
(
为坐标原点)面积的最小值.
设函数,数列
前
项和
,
,数列
,满足
.(Ⅰ)求数列
的通项公式
;
(Ⅱ)设数列的前
项和为
,数列
的前
项和为
,证明:
。
如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点
,连结A¢B.
(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.
一个口袋中有个白球和
个红球
且
,每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(Ⅰ)试用含的代数式表示一次摸球中奖的概率
;
(Ⅱ)若,求三次摸球恰有一次中奖的概率;
(Ⅲ)记三次摸球恰有一次中奖的概率为,当
为何值时,
取最大值.
已知向量,
,
,函数
的最大值为
.
(Ⅰ)求;
(Ⅱ)将函数的图像向左平移
个单位,再将所得图像上各点的横坐标缩短为原来的
倍,纵坐标不变,得到函数
的图像,求
在
上的值域.