(本小题满分12分)
设双曲线的右顶点为
是双曲线上异于顶点的一个动点,从
引双曲线的两条渐近线的平行线与直线
(
为坐标原点)分别交于
和
两点.
(1) 证明:无论点在什么位置,总有
;
(2) 设动点满足条件:
, 求点
的轨迹方程.
已知数列是各项均为正数的等差数列,首项
,其前
项和为
,数列
是等比数列,首项
,且
.
(1)求数列和
的通项公式;
(2)令,其中
,求数列
的前
项和
.
某区体育局组织篮球技能大赛,每名选手都要进行运球、传球、投篮三项比赛,每名选手在各项比赛中获得合格与不合格的机会相等,且互不影响.现有六名选手参加比赛,体育局根据比赛成绩对前
名选手进行表彰奖励.
(1)求至少获得一个合格的概率;
(2)求与
只有一个受到表彰奖励的概率.
已知且
.
(1)在中,若
,求
的大小;
(2)若,将
图像上所有点的纵坐标不变,横坐标伸长到原来的
倍,得到
的图像,求
的单调减区间.
已知函数,
.
(1)设,求
的单调区间;
(2)若对,总有
成立.
(1)求的取值范围;
(2)证明:对于任意的正整数,不等式
恒成立.
已知椭圆的中心在原点,焦点在
轴上,它的一个顶点恰好经过抛物线
的准线,且经过点
.
(1)求椭圆的方程;
(2)若直线
的方程为
.
是经过椭圆左焦点
的任一弦,设直线
与直线
相交于点
,记
的斜率分别为
.试探索
之间有怎样的关系式?给出证明过程.