设上的两点,已知向量,,若m·n=0且椭圆的离心率短轴长为2,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
求与圆外切于点,且半径为的圆的方程.
已知圆,直线,。 (1)证明:不论取什么实数,直线与圆恒交于两点; (2)求直线被圆截得的弦长最小时的方程.
已知的顶点A为(3,-1),AB边上的中线所在直线方程为,的平分线所在直线方程为,求BC边所在直线的方程.
根据下列条件,分别求直线方程: (1)经过点A(3,0)且与直线垂直; (2)求经过直线与的交点,且平行于直线的直线方程.
已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线. (Ⅰ)求,,,的值; (Ⅱ)若时,≤,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号