游客
题文

某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.
厂家设计的抽奖方案是:在一个不透明的盒子中,放入10黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.

(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;
(2)下图是一个可以自由转动的转盘,请你交转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1.在用文字说明和扇形的圆心角的度数.2.结合转盘简述获奖方式,不需说明理由.)

科目 数学   题型 解答题   难度 较易
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

(本小题满分9分) 如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.

(1)求证:
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,当0≤t<49时,求S与t的函数关系式.

(本小题满分9分)如图,抛物线经过点A(1,0)和B(3,0),点C(m,)在抛物线的对称轴上.

(1)求抛物线的函数表达式.
(2)求证: △ABC是等腰三角形.
(3)动点P在线段AC上,从点A出发以每钞1个单位的速度向C运动,同时动点Q在线段AB上,从B出发以每秒1个单位的速度向A运动.当Q到达点A时,两点同时停止运动.设运动时间为t秒,求当t为何值时,△APQ与△ABC相似.

(本小题满分9分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数在第一象限内的图象经过点D、E,且tan∠BOA=.

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

(本小题满分8分) 甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.

(本小题满分8分) 如图①,在一幅矩形地毯的四周镶有宽度相同的边.如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号