(本小题满分8分)下面三条直线l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4不能构成三角形.求m的取值范围.
(本小题满分12分)已知直三棱柱中,
,
,点
在
上.
(1)若是
中点,求证:
∥平面
;
(2)当时,求二面角
的余弦值.
(本小题满分12分)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第号卡片恰好落入第
号小盒中,则称其为一个匹对,用
表示匹对的个数.
(1)求第2号卡片恰好落入第2号小盒内的概率;
(2)求匹对数的分布列和数学期望
.
(本小题满分12分)
设函数,其中向量
.
(1)求函数的最小正周期和在
上的单调递增区间;
(2)中,角
所对的边为
,且
,求
的取值范围.
(本小题满分12分)已知公差大于零的等差数列,
且
为等比数列
的前三项.
(1)求的通项公式;
(2)设数列的前n项和为
,求
.
(本小题满分14分)已知函数,其中
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,求
的单调区间;
(Ⅲ)证明:对任意的在区间
内均存在零点.