(本小题满分10分)
已知椭圆E的两个焦点分别为F1(-1,0), F2(1,0), 点(1, )在椭圆E上.
(1)求椭圆E的方程
(2)若椭圆E上存在一点 P, 使∠F1PF2=30°, 求△PF1F2的面积.
(本小题满分12分)
已知三个内角
的对边分别为
,
的图象与直线
相切,且切点横坐标依次成公差为
的等差数列,点
是函数
的一个对称中心.
(Ⅰ)求的大小;
(Ⅱ)已知,
为
的面积,求
的最大值及此时B的值.
(本小题满分13分)
已知数列,设
,数列
.
(I)求证:是等差数列;
(II)求数列的前n项和Sn;
(Ⅲ)若一切正整数n恒成立,求实数m的取值范围.
(本小题满分13分)
抛物线上一点
到其焦点的距离为5.
(I)求与
的值;
(II)若直线与抛物线
相交于
、
两点,
、
分别是该抛物线在
、
两点处的切线,
、
分别是
、
与该抛物线的准线交点,求证:
.
(本小题满分13分)已知函数,其中
为自然对数的底数.
(Ⅰ)当时,求曲线
在
处的切线与坐标轴围成的面积;
(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为
,求
的值.
(本小题满分12分)科研所研究人员都具有本科和研究生两类学历,年龄段和学历如下表,从该科研所任选一名研究人员,是本科生概率是,是35岁以下的研究生概率是
.
(Ⅰ)求出表格中的和
的值;
(Ⅱ)设“从数学教研组任选两名教师,本科一名,研究生一名,50岁以上本科生和35岁以下的研究生不全选中” 的事件为A,求事件A概率P(A).