如图3,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长
为多少时,盒子容积最大?
(图3)
(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(1)求证:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求点B到平面PCD的距离。
(本小题满分12分)已知数列满足
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,证明:
是等差数列;
(Ⅲ)证明:
(本小题10分)已知向量=(1+cosB,sinB)且与向量
=(0,1)所成的角为
,其中A、B、C为ΔABC的三个内角。
(1)求角B的大小;(2)若AC=,求ΔABC周长的最大值。
(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:
(λ≥2)。
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。
关于x的方程2x2-tx-2=0的两根为函数f(x)=
(1)求f(的值。
(2)证明:f(x)在[上是增函数。
(3)对任意正数x1.x2,求证: